WebClub - Всероссийский Клуб Веб-разработчиков
WebClub.RU » Архив » Питон - модули, пакеты, классы, экземпляры

Питон - модули, пакеты, классы, экземпляры


Дата публикации: 17-03-2013

Модули - структурирование пространства имен

При создании больших программ или библиотек большим количеством людей встает проблема коллизий имен. Питон решает эту проблему так же, как и большинство современных языков - структурированием пространства имен с помощью иерархически организованных модулей.

В Питоне 3 пространства имен: встроенное пространство имен (им можно управлять с помощью модуля доступа к интерпретатору sys), локальное пространство функции, и глобальное пространство модуля. (Объектно-ориентированное программирование создает дополнительные пространства классов и экземпляров классов, об этом ниже). Каждое пространство имен - это список отображений имени в значение.

Модуль - это совокупность описаний, объединенных в общее пространство имен - глобальное пространство модуля. Модули подключаются к программе (или другому модулю) с помощью оператора import, после которого имена из пространства имен модуля становятся доступными. Какие именно имена становятся доступны, определяет оператор import: вариант import module делает доступным ровно одно имя - имя модуля module, но зато через это имя можно использовать все глобальные имена модуля в виде module.name. В варианте from module import name из модуля импортируется указанное имя или список имен. В варианте from module import * из модуля импортируются все имена. Хотя автор модуля может ограничить этот список, а в отсутствии такого ограничения не импортируются имена, начинающиеся с подчеркивания - считается, что это внутренние имена модуля, не входящие в его публичный интерфейс.

Модуль может быть написан на Python, C или C++. Модули, написанные на Питоне, позволяют создавать новые классы (об объектно-ориентированном программировании речь будет идти ниже). Модули написанные на C и C++ позволяют создавать новые типы данных. Модули, написанные на C/C++ могут быть встроенные (builtin) или подгружаемые (DLL в Windows, разделяемые библиотеки в тех вариантах UNIX, в которых формат выполняемых файлов ELF).

Модуль на Питоне - это текстовый файл с расширением .py, содержащий описания переменных, функций и классов, плюс выполняемый код, который позволяет инициализировать модуль. Этот код выполняется при первом импорте модуля, после чего интерпретатор запоминает, что модуль уже проимпортирован и проинициализирован, и при последующих импортах этого же модуля код инициализации не выполняется.

Модули можно объединять в древовидные иерархии. Например, пакет XML содержит в себе пакеты DOM, SAX, Parsers (и другие, в зависимости от реализации). В результате можно проимпортировать PyExpat командой import xml.parsers.expat, тогда команды этого модуля будут доступны как xml.parsers.expat.ParserCreate, а можно проимпортировать его же командой from xml.parsers import expat, тогда команды этого модуля будут доступны как expat.ParserCreate. Или сразу from xml.parsers.expat import ParserCreate!
Объектно-ориентированное программирование

Питон - объектно-ориентированный язык со множественным наследованием. Можно сказать, что Питон поддерживает классическую ОО-модель с некоторыми особенностями. Классы в Python могут иметь статические переменные, разделяемые всеми экземплярами класса, но не могут иметь статических методов. Все методы относятся к экземплярам класса. Все методы можно переопределять в наследниках. Ссылка на объект (экземпляр класса) передается в методы в явном виде, в первом параметре. Традиционно эту переменную называют self. Какого-то общего предка всех классов (типа Object) в Python нет. Вообще в ОО-программировании в Питоне важно не кто от кого наследуется, а какой поддерживается интерфейс; наследование лишь дает реализацию. Формальных механизмов проверки интерфейсов пока нет, но возможно они будут включены в язык и библиотеки; Zope делает шаги в этом направлении.

Конструктор и деструктор класса называются __init__ и __del__ (встроенные и служебные имена в Питоне обозначаются двумя подчеркиваниями перед и после имени; это всего лишь соглашение, язык не запрещает программисту писать собственные методы с такими именами). Вернее было бы назвать эти методы initializer и finalizer - они сами не размещают и не освобождают память (это делает за них интерпретатор), они инициализируют и очищают свои переменные.

В Питоне нет отдельного оператора new для создания экземпляров класса. Для создания экземпляра класса вызывается класс с необходимыми параметрами. Эти параметры передаются в __init__. Метод __del__, конечно, вызывается без параметров (кроме, естественно, self). Для удаления объектов (и не только экземпляров классов) в Питоне есть оператор del.

Пример.

class Foo:     
   bar = "baz"     
     
   def __init__(self, foo):     
      self.foo = foo     
     
   def __del__(self):     
      del self.foo     
     
foo = Foo(12)     
del foo     

Описание класса создает новое пространство имен, в котором определяются статические переменные (в нашем примере это bar) и методы. Создание экземпляра порождает пространство имен объекта, доступ к которому осуществляется через переменную экземпляра класса foo, а внутри методов класса - через переменную self.

Классы в Питоне позволяют программисту создавать новые типы данных и определять для них все операции, доступные для встроенных типов. Например, метод __getitem__ позволяет индексировать объект, а __setitem__ - присваивать индексу объекта. Метод __getitem__ также позволяет объекту участвовать в цикле for, эмулируя последовательность (sequence). Есть методы, позволяющие объекту эмулировать булевские значения и участвовать в операторах if и while. Методы __getattr__ и __setattr__ позволяют читать и писать атрибуты объектов. Метод __call__ позволяет вызывать экземпляр класса с параметрами!

Python позволяет переопределить все инфиксные операции, причем отдельно для левого и правого аргумента выражения. Например, если a - экземпляр класса A, и b - экземпляр класса B, то для вычисления выражения a + b Питон будет сначала искать метод __add__ в классе A, а если не найдет - то метод __radd__ в классе B (а если и там не найдет - возбудит исключение TypeError).

Многие программисты, особенно писавшие на C++, боятся и не любят множественного наследования. Авторы языка Java вообще не включили множественное наследование в язык. Совершенно напрасно! Python позволяет использовать множественное наследование весьма успешно и удобно. Множественное наследование облегчает переиспользование кода (code reuse) вместо copy/paste-программирования, что очень важно и для эффективности, и для читаемости программ, и для отладки. Часто программисты на Питоне создают класс с помощью множественного наследования из нескольки связанных между собой "кирпичиков", словно из конструктора. Такие "кирпичики" в ОО-программировании называются MixIn-классами. Подробную статью про программирование с помощью MixIn-классов можно прочесть в Linux Journal

Еще один способ использования классов (точнее, экземпляров), не связанный непосредственно с ОО-программированием - использование пространства имен, которое предоставляет объект. Рассмотрим следующую проблему. Вам надо пройти циклом по списку, сохраняя между итерациями цикла некоторую информацию. Это можно сделать циклом for, никаких проблем. А можно воспользоваться возможностями функционального программирования, которые есть в Питоне - функциями map, filter, reduce и тому подобное. Эти функции требую в качестве первого параметра функцию, которую они в процессе цикла вызывают. Это эффективнее, чем цикл for (эти функции-то написаны на C), но возникает проблема с хранением состояния между итерациями. Функция, которую вызывает map может хранить состояние только в глобальных переменных. Для простых программ это вполне приемлемо. Но вот, скажем, с многопоточными программами будут проблемы - необходимо запирать и синхронизировать доступ к глобальным переменным. Да и вообще к глобальным переменным надо обращаться только при крайней нужде.

Вот тут на помощь приходит дополнительное пространство имен, существующее в экземпляре класса. Создадим класс

class Process:     
   def __init__(self):     
      self.foo = 0     
     
   def __call__(self, v):     
      if self.foo > 100:     
         raise OverflowError     
      self.foo += v     
      return self.foo     

, создадим экземпляр этого класса: p = Process(), и передадим этот объект в map вместо функции: result = map(p, sequence). Функция map, ничего не подозревая, будет вызывать переданный ей объект как функцию с одним параметром. Никаких проблем - мы так описали класс, что его экземпляры можно вызывать, и именно с одним параметром! И от итерации к итерации объект p сохраняет необходимое состояние.

Другой похожий пример:

class Process:     
   def __init__(self):     
      self.sum = 0     
     
   def add(self, v):     
      self.sum += v     
      return self.sum     
     
p = Process()     
result = map(p.add, sequence)     
print p.sum     

Вся разница в этом примере - мы передаем не объект p, а его метод p.add. Но что такое p.add? В Python это особая сущность, называемая BoundMethod. Это объект, который помнит адрес объекта p, адрес функции add класса Process, и, когда его вызывают, в свою очередь вызывает метод класса с правильным первым параметром self. Если обратиться к этому методу как Process.add, то это - UnboundMethod, и его надо вызывать, подставив все параметры в явном виде: Process.add(p, 1). Вызов в таком виде часто используется для вызова родительского конструктора или метода:

class Foo(Bar)     
   def __init__(self):     
      Bar.__init__(self)     

Еще один вариант использования этого трюка - сортировка списков. Списки в Питоне имеют метод sort(), который принимает параметр - функцию сравнения. Если сравнение сложное, и зависит от внешних условий, в качестве функции можно передать заранее проинициализированный объект.

Популярное

Не так давно в сети появился новый сервис, под названием Dead Man Zero. Этот сервис сделал...
Рынок социальных площадок уже давно стал стабильным. Несмотря на то, что время от времени...
Artisteer 4 – единственный в своем роде продукт, позволяющий автоматизировать работу над созданием...
Октябрь 2018 (14)
Февраль 2017 (3)
Январь 2017 (1)
Август 2016 (1)
Май 2016 (2)
Ноябрь 2015 (1)

Карта сайта: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41

Друзья сайта



2hidra

Hydra onion

2hidra.com


Случайная цитата

Оноре де Бальзак:

"Тот, кто ищет миллионы, весьма редко их находит, но зато тот, кто не ищет, не находит их никогда."

Опрос

Какой антивирус Вы используете?

Kaspersky Antivirus
NOD32
Norton Antivirus
Dr.Web
Panda
Аvast!
ClamWin
Другой...